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▶ Objective: create and predict extra reasonable data between
existing data

▶ Applications
▶ Fill gaps in time series data because recorded time series data

may have missing data or are nonuniformly sampled.
▶ Upsample for increasing the resolution of time series data
▶ Data augmentation for better data analysis, numerical

computing, machine learning (avoid overfitting and boost
generalization).

▶ Perform smoothing between discrete data points by producing
extra points.

▶ Estimate and approximate the unknown data generating
function

▶ Generate continuous curves for data fitting to enable data
explanation.
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Sinc Interpolation Method

▶ The sinc interpolation method, also known as bandlimited
interpolation, is a mathematical technique used to reconstruct
a continuous signal from its discrete samples.

▶ It is closely tied to the Nyquist-Shannon sampling theorem,
which states that a bandlimited signal can be perfectly
reconstructed from its samples if the sampling rate is at least
twice the highest frequency present in the signal (the Nyquist
rate).



Sinc Interpolation Method

The sinc interpolation formula for reconstructing a continuous-time
signal x(t) from its discrete samples x[n] is

x(t) =
∞∑

n=−∞
x[n] sinc( t − nT

T )

where
▶ x[n] are the sampled values of the signal.
▶ T is the sampling interval.
▶ sinc(x) = sin(πx)

πx



Sinc Interpolation Method

Figure: Sinc Interpolation: Reconstruction by An Ideal Lowpass Filter



Polynomial Interpolation Methods

1. Lagrange Interpolation:
Given a set of n+ 1 timestamps {x0, x1, ..., xn}, create a set of
Lagrange polynomials {ℓ0(x), ℓ1(x), ..., ℓn(x)} each of degree
n:

ℓj(x) =
x − x0
xj − x0

...
x − xj−1

xj − xj−1

x − xj+1

xj − xj+1
...

x − xn
xj − xn

Thus, ℓj(xm) = 0 if m ̸= j and ℓj(xj) = 1. The Lagrange
interpolation is performed through

L(x) =
n∑

j=0

yjℓj(x)

where L(x) passes through {(x0, y0), ..., (xn, yn)}



Polynomial Interpolation Methods

1. Lagrange Interpolation:



Polynomial Interpolation Methods

2. Barycentric Rational Interpolation by Floater and Hormann:
The Floater-Hormann Interpolant R(x)

R(x) =
∑n

i=0 wi
yi

x−xi∑n
i=0 wi

1
x−xi

where wi are weights that depend on the choice of a degree
parameter d. They are calculated as

wi =
∑
k∈Ji

(−1)k
k+d∏

j=k,j̸=i

1

xi − xj

Ji = {k ∈ {0, 1, ..., n − d} : i − d ≤ k ≤ i}



Polynomial Interpolation Methods

2. Barycentric Rational Interpolation by Floater and Hormann:
▶ The use of rational functions can mitigate oscillations that

may occur with high-degree polynomial interpolation
→ avoid the Runge’s phenomenon

▶ The Barycentric form is computationally efficient and
numerically stable

▶ d controls the degree of the local polynomial used in the
rational approximation. The choice of d influences the
smoothness and accuracy of the interpolation.



Piecewise Polynomial Interpolation Methods

1. Linear Interpolation: join every two neighboring points by a
straight line
▶ Piecewise linear polynomial causes discontinuities at each

point.



Piecewise Polynomial Interpolation Methods

2. Cubic Interpolation: constructs a cubic polynomial

f(x) = ai(x − xi)
2 + bi(x − xi)

2 + ci(x − xi) + di

for each interval [xi, xi+1] to interpolate between data points,
where ai, bi, ci and di are determined by

1) Matching function values at endpoints:

f(xi) = yi, f(xi+1) = yi+1

2) Matching first derivatives at endpoints:

f′(xi) = yi
′, f′(xi+1) = y′i+1



Piecewise Polynomial Interpolation Methods

2. Cubic Interpolation:

▶ Cubic interpolation can ensure that the function and its first
derivative are continuous at the interpolation points.

▶ If we don’t know the derivative of the function, we could
simply use derivative 0 at every point.

▶ We can obtain smoother curves when we use the slope of a
line between the previous and the next point as the derivative
at a point.
→ the resulting polynomial is called a Catmull-Rom spline



Piecewise Polynomial Interpolation Methods

2. Cubic Interpolation:



Piecewise Polynomial Interpolation Methods
3. Cubic Hermite Interpolation: uses both the function values yi

and derivatives yi′ at the data points. The interpolating cubic
Hermite polynomial is

f(x) = h0(t)yi + h1(t)yi+1 + h2(t)yi
′ + h3(t)y′i+1

where t = x − xi
xi+1 − xi

and the Hermite basis functions are

h0(t) = 2t3 − 3t2 + 1, h1(t) = −2t3 + 3t2

h2(t) = t3 − 2t2 + t, h3(t) = t3 − t2



Piecewise Polynomial Interpolation Methods
4. Spline Interpolation: constructs a cubic polynomial

Si(x) = ai(x − xi)
2 + bi(x − xi)

2 + ci(x − xi) + di

for each interval [xi, xi+1] to interpolate between data points,
where ai, bi, ci and di are determined by

1) Matching function values at endpoints:

Si(xi) = yi, Si(xi+1) = yi+1

2) Continuity of first and second derivatives:

S′
i(xi+1) = S′

i+1(xi+1), S′′
i (xi+1) = S′′

i+1(xi+1)



Piecewise Polynomial Interpolation Methods

4. Spline Interpolation: constructs a cubic polynomial

Si(x) = ai(x − xi)
2 + bi(x − xi)

2 + ci(x − xi) + di

for each interval [xi, xi+1] to interpolate between data points,
where ai, bi, ci and di are determined by

3) Boundary conditions:
▶ Natural spline: S′′

0 (x0) = S′′
n−1(xn) = 0

▶ Clamped spline: Specify S′
0(x0) and S′

n−1(xn)



Piecewise Polynomial Interpolation Methods

5. B-Spline Interpolation: uses a linear combination of basis
splines, defined by control points and the knot vector. The
B-spline is

f(x) =
m∑

i=0

Bi,k(x)Pi

where
1. Pi: control points
2. Bi,k(x): B-spline basis functions of degree k



Piecewise Polynomial Interpolation Methods
5. B-Spline Interpolation: uses a linear combination of basis

splines, defined by control points and the knot vector. The
B-spline is

f(x) =
m∑

i=0

Bi,k(x)Pi

Bi,k(x) are computed recursively:

Bi,0(x) =
{
1 ti ≤ x < ti+1

0 otherwise

Bi,k(x) =
x − ti

ti+k − ti
Bi,k−1(x) +

ti+k+1 − x
ti+k+1 − ti+1

Bi+1,k−1(x)

where t = {t0, t1, ..., tm} is the knot vector determining where
and how the basis functions are defined.



Piecewise Polynomial Interpolation Methods
5. B-Spline Interpolation:

▶ If ti+k − ti = 0, then x−ti
ti+k−ti

is treated as 0；If
ti+k+1 − ti+1 = 0, then ti+k+1−x

ti+k+1−ti+1
is treated as 0.

▶ If the original knot vector is{t0, t1, ..., tm}, we need to extend it
by repeating the first and last knots k + 1 times. For instance,
for a cubic B-spline (k=3), the extended knot vector would be

{t0, t0, t0, t0, t1, ..., tm−1, tm, tm, tm, tm}
This ensures that

▶ Bi,k(x) at the boundaries (where i=m) is defined properly
▶ Bm,k(x) and B0,k(x) transition smoothly to 0 outside the

domain of interest
▶ The control points {P0,P1, ...,Pm} can be determined by

minimizing
n∑

j=0

(yj −
m∑

i=0

Bi,kPi)2



Piecewise Polynomial Interpolation Methods

6. Bézier Spline Interpolation: Bézier splines are parameterized
curves defined by control points. A Bézier curve of degree k is

B(t) =
k∑

i=0

(
k
i

)
(1− t)n−itiPi

where Pi are the control points.



Piecewise Polynomial Interpolation Methods
6. Bézier Spline Interpolation:

1) Single Bézier Curve
▶ If a single Bézier curve is used, it is defined by a single

polynomial of degree k and passes through or approximates
the data points. This approach does not divide the curve into
segments, so it is not piecewise.

2) Composite Bézier Splines
▶ A composite Bézier spline is a piecewise polynomial

interpolation method. It connects multiple Bézier curves
end-to-end to form a larger curve that passes through or
approximates data points.

▶ Each segment is a separate Bézier curve (defined by its
control points), and smoothness at the connections (e.g.
first-derivative and second-derivative continuity) is achieved by
appropriately choosing the control points.



Regression-Based Methods
1. Kriging

▶ The method is named after the South African mining engineer
Danie Krige, who first introduced the technique in the 1950s
for mining applications.

▶ It is a statistical technique used for spatial data interpolation,
commonly applied in fields such as geophysics, geostatistics,
environmental modeling, and even machine learning.

▶ It is particularly valuable when dealing with data that has
spatial or temporal correlation, meaning that the values of a
variable at nearby locations are likely to be similar.
→ The primary goal is to predict the value of a field (or

signal) at an unmeasured location, based on the known
values at surrounding locations.



Regression-Based Methods
1. Kriging

The Kriging estimator at location x0 is written as

Ẑ(x0) = m +

n∑
i=0

λiZ(xi)

where Ẑ(x0) is the predicted value at location x0, m is the
known stationary average, n is the number of known data
points, Z(xi) assumes to be stochastic with a zero mean,
constant variance, and a non-constant covariance, and λi are
the weights associated with each data point Z(xi).
▶ The weights are obtained by solving a system of equations that

minimizes the prediction variance, considering the spatial
correlation between points as defined by the variogram.

▶ Kriging can be seen a stochastic regression method.



Regression-Based Methods

2. Kernel Methods
▶ Kernel interpolation methods involve using a kernel function to

compute the weight for each known data point, which is then
used to estimate the value at a new, unobserved point.

▶ These methods often rely on the Mercer’s theorem, which
states that any positive semidefinite function can be
represented as an inner product in a higher-dimensional feature
space.

▶ The kernel acts as the inner product in the high-dimensional
feature space.



Regression-Based Methods

2. Kernel Methods : The general framework of kernel
interpolation is

f(x) =
n∑

i=1

αik(x, xi)

▶ f(x) is the estimated value at the point x
▶ xi are known data points
▶ αi are weights associated with the data points
▶ k(x, xi) is the kernel function that measures the similarity

between the point x and each xi.

The weights αi are usually determined by solving a system of
equations based on the interpolation conditions, which can
vary depending on the type of kernel method being used.



Regression-Based Methods

2. Kernel Methods
▶ Common kernel functions

▶ Linear kernel: k(x, x′) = xTx′

⋆ This kernel is used when the data is assumed to be linearly
related

▶ Polynomial kernel: k(x, x′) = (xTx′ + c)d

⋆ A polynomial kernel introduces polynomial relationships
between points.

▶ Sigmoid kernel: k(x, x′) = tanh(αxTx′ + c)
⋆ Used for modeling more complex relationships, and it’s often

employed in SVM-based kernel interpolation methods.



Regression-Based Methods

2. Kernel Methods
▶ Common kernel functions

▶ Gaussian (RBF) kernel: k(x, x′) = exp(− ∥x−x′∥22
2σ2 )

⋆ The Gaussian kernel (also called the Radial Basis Function
(RBF) kernel) is widely used because it can model
non-linear relationships and is effective for interpolation in
high-dimensional spaces.

▶ Laplacian kernel: k(x, x′) = exp(− ∥x−x′∥
σ

)

⋆ This kernel is similar to the Gaussian kernel but decays more
slowly, allowing it to model different types of relationships.



Regression-Based Methods

2. Kernel Methods: Kernel Ridge Regression (KRR) is one of the
most popular kernel-based interpolation techniques, combining
the idea of ridge regression (a form of regularized linear
regression) with the kernel trick
▶ The weights αi are determined by minimizing the cost function

J(α) =
n∑

i=1

(yi − f(xi))
2 + λ

n∑
i=1

α2
i

The system can be efficiently solved by
α = (K + λI)−1y

where K is the kernel matrix, whose elements are k(xi, xj).



Disadvantages of Famous Methods
▶ Sinc interpolation

▶ The disadvantage of perfect reconstruction is the inability to
deal with noisy cases.

▶ Sinc interpolation requires the input data to be uniformly
sampled.

▶ The sampling frequency should be beyond the Nyquist rate.

▶ Polynomial interpolation and piecewise polynomial
interpolation
▶ Runge’s phenomenon occurs with high-degree polynomial

interpolation.
▶ The estimated curve passes through all the given points.

→ the interpolation result is poor once the data is
contaminated with noise.



Disadvantages of Famous Methods

▶ Regression-Based Methods
▶ Statistical properties of the underlying stochastic process

should be known or assumed for Kriging.
▶ Adoption of complex kernels may lead to overfitting for the

kernel methods.
▶ We may want to use more flexible basis functions beyond the

random process, or kernels.
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Intuition and Methodology

1. For a bandlimited function f(t), we can express it using a
complete orthogonal bandlimited function set {bi(t)}

f(t) =
∞∑
i=1

aibi(t), t ∈ (−∞,∞)

2. f(t) =
∞∑
i=1

aibi(t) for t ∈ (−T/2,T/2) also holds.

⇒ ∥f(t)∥(−T/2,T/2) =
∞∑
i=1

|ai|∥bi(t)∥(−T/2,T/2)

3. Practically, we can only use finite number of basis functions

∥f(t)∥(−T/2,T/2) ≥
m∑

i=1
|ai|∥bi(t)∥(−T/2,T/2)



Intuition and Methodology
4. Among all complete orthogonal bandlimited function sets, the

prolate spheroidal wave functions (PSWFs) {ψi(c, t)}
concentrates most energy in the interval (−T/2,T/2), where
c = ΩT/2 and Ω is the half bandwidth.

⇒
m∑

i=1
|ai|∥ψi(c, t)∥(−T/2,T/2) = max

{bi(t)}

m∑
i=1

|ai|∥bi(t)∥(−T/2,T/2)

5. We can even nonuniformly divide the bandwidth into several
dominant subbands, and use a set of PSWFs {ψi(cj, t)} to
approximate each subband.
▶ The number of required basis functions decreases
▶ More accurate approximation can be achieved

▶ Some energies that leak off from each subband are still within
the whole band.



Prolate Spheroidal Wave Functions

PSWFs are denoted by ψi (c, t) , i = 0, 1, . . ., where c = ΩT/2 and
its Fourier transform concentrates in the band of ω ∈ (−Ω,Ω).
PSWFs satisfy the following properties:

1. Eigenfunction Property: All the PSWFs satisfy

λi (c)ψi (c, t) =
∫ T/2

−T/2

sinΩ(t − s)
π (t − s) ψi (c, s) ds

Furthermore, λi (c) satisfies 1 > λ0 (c) > λ1 (c) > · · · > 0 and
for a given c, λi (c) falls off to zero rapidly with i once i
exceeds (2/π) c.

2. Orthogonality: {ψi (c, t) , i = 0, 1, 2, · · · } forms an orthogonal
and complete set in L2

T /2 while it forms an orthonormal and
complete set in B.



NUBD-PSWF
The proposed non-uniform band divided PSWF (NUBD-PSWF) is
introduced as follows.
▶ Given a signal, we compute its discrete Fourier transform and

pick out several frequencies with large absolute values as
dominant frequencies, e.g. f1, f2, f3, and f4.



NUBD-PSWF
The proposed non-uniform band divided PSWF (NUBD-PSWF) is
introduced as follows.
▶ Select appropriate bandwidths for each subband (e.g. the red,

blue, green, and orange rectangles) so that subbands do not
overlap with each other, but still manage to cover the whole
band.



NUBD-PSWF
The proposed non-uniform band divided PSWF (NUBD-PSWF) is
introduced as follows.
▶ Modulate each PSWFs function set to appropriate subband

{ej2πfitψj(ci, t)}
where ci = ΩiT/2, and Ωi is the bandwidth of the subband
associated with fi.



NUBD-PSWF
The proposed non-uniform band divided PSWF (NUBD-PSWF) is
introduced as follows.
▶ We can collect these functions to serve as basis functions, and

perform linear regression to approximate the input signal
generating mechanism, and further do interpolation.



▶ NUBD-PSWF is a regression-based method, which uses
modulated PSWFs as basis functions.

▶ Sparsely choosing dominant frequencies enables the
NUBD-PSWF method to address noisy cases, and to avoid
the over-fitting problem.

▶ Based on the idea of identifying dominant frequencies, we
proceed on following works to improve interpolation results.
▶ Use the sparse approximation concept and optimization

techniques to identify dominant frequencies
▶ The input data can be nonuniformly sampled.
▶ The sampling frequency can below the Nyquist rate.

▶ Use advanced time-frequency analysis to capture
time-frequency components of the input signal, and use
generalized chirp modulation to modulate PSWFs.
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